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An improved finite-element flux-corrected transport (FE-FCT) method for the nu-
merical solution of hydrodynamic conservation equations is described, based on the
method developed by Lohner and his collaborators to solve conservation equations
in fluid mechanics, and its application is extended to gas discharge problems. The
high- and low-order schemes used are the ones proposed by Lohner who adds dif-
fusion to the high-order scheme by subtracting the lumped-mass matrix from the
consistent-mass matrix to give the low-order scheme; the diffusion coefficient is
adjusted globally. A variable diffusion coefficient is introduced; it is assumed to
be constant in each element and is shown to transform the high-order solution to
a scheme equivalent to an upwind scheme which has minimal diffusion but en-
sures positive results. This avoids the complexity of upwinding in FE, especially in
two dimensions. It is also shown that the correct amount of “real” diffusion may
be easily added to the algorithm when required, for example, for electrons. Re-
sults are presented which show that the high-order scheme reduces to the upwind
difference scheme when the new diffusion is used. The proposed FCT scheme is
shown to give similar results, in comparison with a fourth-order FD-FCT algorithm.
Finally, the new method is applied to a streamer propagation problem in one dimen-
sion, and the results obtained are shown to agree well with previously published
results. c© 1999 Academic Press

Key Words:flux-corrected transport; conservation equations; streamers; gas dis-
charges; Poisson’s equation.

1. INTRODUCTION

Equations describing the drift and diffusion of charged particles in an electric field rep-
resent the starting point for most theoretical studies in gaseous discharges. In many cases
the electric field, being controlled by space-charge effects, must be obtained from Poisson’s
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equation. In these cases the field varies strongly in both space and time, and numerical
methods are needed to account for charge cancellation in an evaluation of the net charge
density. Near the electrodes the electric field variation is particularly great, which demands
a very fine spatial mesh, whereas the body of the discharge plasma rarely exhibits the steep
gradients associated with the electrodes. A nonuniform spatial mesh is therefore essential
for an accurate numerical treatment of electrode phenomena and the body of the gas simul-
taneously. In addition, the numerical algorithm should fulfil the following requirements:

• it should give positive, accurate results, free from nonphysical density fluctuation and
numerical diffusion;

• it should be computationally efficient; and
• it should be easily extendable to two dimensions.

The first requirement is fullfilled by using a very accurate method such as the flux corrected
transport (FCT) which introduces the “real” diffusion in the system. In the field of gas
discharges finite difference methods (FD) are often used in preference to finite elements
(FE). However, in order to fulfil the last two requirements one has to resort to FE as they
offer computational efficiency through the use of unstructured grids, and they can be easily
extended to two dimensions. All these suggest that a finite element version of FCT should
be developed.

The FE-FCT method presented in this paper is an extension of the method proposed
by Lohneret al. [7] which has been used very successfully in fluid mechanics in two
dimensions, and it has the distinct advantage, in comparison with other FE schemes, that
no operation splitting for multidimensional problems is required. Lohner uses the two-step
Lax–Wendroff method as the high-order scheme and adds diffusion to transform it to a low-
order one. Diffusion is added by subtracting the lumped mass matrix from the consistent
mass matrix and the diffusion coefficient is taken as constant everywhere.

This kind of diffusion fails to satisfy the optimal condition which is critical to the per-
formance and accuracy of the FCT method. Since the gas discharge calculations involve
variable speed and mesh, if at a certain region the diffusion coefficient is low, then oscilla-
tions will result; if the diffusion coefficient is higher than the optimum then the results will
be unrealistically diffusive. It is, however, not possible to have optimum diffusion coefficient
everywhere at any time with a fixed global diffusion coefficient.

Lohneret al.[7], do not strictly follow Zalesak’s method in that they use a fixed diffusion
coefficient in order to derive a low-order solution, rather than using a low-order algorithm
that gives positive, ripple-free, results. Thus the approach taken by Lohneret al. [7] is very
similar to that of Boris and Book [2], who made a detailed study of the effect of the different
choices of diffusion coefficients to control phase and diffusion errors.

We choose to follow the approach of Zalesak [18] more strictly, where both high- and
low-order solutions are computed, as well as the flux necessary to transform the high-order
solution into the low-order solution. In this case there is no scope to adjust the diffusion
coefficients.

In order to adapt Lohner’s method to the strict Zalesak formulation we need to develop a
suitable low-order solution. The low-order solution most often used is the upwind difference
method [14], which has the minimum diffusion that guarantees positive results [4].

Below we show, both mathematically and numerically, that we can add precisely the
correct variable diffusion to transform our high-order solution into a low-order solution,
which is equivalent to an upwind difference solution. Then we follow Zalesak’s method
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of developing an FCT algorithm. This method has the added advantage of giving a ripple-
free positive low-order solution, without having to consider upwind fluxes which can be
computationally expensive in two dimensions.

The variable diffusion coefficient used, is constant within each element, and is self-
adjusted depending on the element size, particle speed, and time step. The optimal diffusion
coefficient is found to be the diffusion coefficient inherent in the upwind method (Godunov
[4], Boris and Book [1], Steinle and Morrow [14], Ward [16]); this is the minimum diffusion
needed to guarantee positive results. Nevertheless, if the upwind algorithm was used as the
low-order scheme the FCT would become very computationally expensive and complex, in
two dimensions. So, the effective diffusion coefficient for the upwind method is used, and
added to the high-order scheme as a mass diffusion in order to give the low-order scheme.
The computational efficiency of Lohner’s method is maintained, whereas the optimum
variable diffusion we introduce in this paper ensures improved FCT performance.

Initially the finite difference upwind method (FD-UW) is compared with the new low-
order scheme, and the results are shown to be almost identical. Several tests are conducted to
show that the method works for various conditions. The improved FE-FCT is then compared
with Lohner’s method in one dimension, the Lax–Wendroff FD-FCT, and a fourth-order
FD-FCT [14]; it is shown to exhibit improved performance over the first two, and very
similar performance to the third.

Finally, the method is applied to problems which involve diffusion, and to a positive
streamer calculation. The results are in very good agreement with results obtained using
the fourth-order FD-FCT method by Morrow for the same problem [11].

2. FE-FCT

The details of the FE-FCT method proposed by Lohner can be found in the literature
[6–9, 13]. The authors will concentrate on the diffusion term which is the parameter of
importance. Consider the simple advection equation in 1D,

∂u

∂t
+ ∂ f

∂x
= 0, (1)

whereu is the speed,f is the flux,t is the time, andx is the distance. The present FCT
algorithm uses the two-step form of the one-step Taylor–Galerkin scheme described in [3]
as the high-order scheme. This scheme belongs to the Lax–Wendroff family. Given the
equation above the solution is advanced fromtn to tn+1 = tn + 1t in two steps:

First step(advective predictor),

un+1/2 = un − 1t

2

∂ f n

∂x
. (2)

Second step(corrector step),

1un = un+1 − un = −1t
∂ f n+1/2

∂x
. (3)

The spatial discretization of Eqs. (2) and (3) is then performed via the classic Galerkin
weighted residual method using linear elements, and the following system of equations is
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obtained [7]:

Mc∆un = Rn, (4)

whereMc denotes the consistent mass matrix [8],∆un is the vector of nodal increments,
andRn is the vector of added element contributions to the nodes.

The next step for the FE-FCT method is to derive the low-order scheme. The require-
ment placed on the low-order scheme in any FCT method is monotonicity and strictly
positive density. The low-order scheme must not produce any nonphysical or numerical
wriggles. The better the low-order scheme, the easier the resulting task of limiting will be.
Lohner added mass diffusion to the lumped-mass Taylor–Galerkin scheme in the context of
FE-FCT. This simplest and least expensive form of diffusion is obtained by subtracting the
lumped-mass matrix [8] from the consistent mass matrix for linear elements

Diff = cd(Mc − M l)un, (5)

wherecd is the diffusion coefficient and is assumed to be constant within the range 0–1.
This diffusion is added to the high-order scheme to give a low-order scheme. The diffusion
cannot be simply added to the high-order scheme in order to obtain monotonic results, as a
multipoint coupling of the right-hand side occurs due to the consistent mass matrix applied
to the high-order scheme [7]. The imposition of monotonicity can nevertheless be achieved
by using the lumped-mass matrix instead. As the terms originating from the discretization
of the fluxes in Eq. (4) are the same as in the low-order scheme, the low-order scheme is
given by

M l∆ul = R + cd(Mc − M l)un. (6)

The final step of the FE-FCT is the flux-limiting procedure provided by Zalesak’s multidi-
mensional limiter [18].

3. DIFFUSION COEFFICIENT IMPROVEMENT

As the optimal diffusion coefficient varies with speed, mesh size, and step size, it is clear
that a global diffusion coefficient cannot be optimal everywhere, especially in the case
of gas discharge calculation where one has variable speed and mesh size. In Fig. 1 we
demonstrate the problem with Lohner’s method and show the improvement that can be
obtained by the new method using as an example the propagation of a square wave of
amplitude 10 and width 0.2 cm, starting fromx = 0.3 cm with a linearly decreasing speed
of the form w = (5− x) cm/s. The figure shows the propagation of the wave after 1 s
with three different diffusion coefficients,cd = 0.4, cd = 1 constant everywhere (Lohner’s
method), and a variable self-adjusted diffusion coefficient,cd (the authors’ method). In the
case wherecd = 0.4, at some points the diffusion is too low and as a result the FCT gives
oscillations. On the other hand, whencd = 1 the opposite happens; the diffusion is more
than enough and, hence, the FCT result is diffusive. Only when the self-adjustable diffusion
coefficient is used are the results found to be optimal.

The upwind scheme is the ideal low-order scheme because it ensures that the results
have minimum diffusion and are always positive (Godunov [4], Lohneret al. [7], Steinle
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FIG. 1. Performance of the FE-FCT method with various diffusion coefficientscd: ¦, cd = 0.4 (oscillatory
results); - -,cd = 1 (diffusive results); ———self-adjustedcd (ideal diffusion).

and Morrow [14], Boris and Book [1], Ward [16]). Nevertheless this method becomes very
complex in FE and especially in two dimensions and it would be better if it is avoided.
The action taken here was to add the optimal diffusion inherent in the upwind scheme to
our high-order scheme as a form of mass diffusion. Consider the (Mc − Ml ) term in one
dimension on a regular grid of length1x. For the j th node this takes the form

(u j +1 − 2u j + u j −1)

which is a diffusion term. Now the optimal diffusion coefficient, i.e. the diffusion coefficient
associated with upwind, is given by Ward [16],

Duw = 1tw

21x

(
1 − 1tw

1x

)
= c(1 − c)

2
, (7)

where1t is tn+1 − tn, w is the speed,1x is the mesh spacing at the element-containing node
j , andc is the local Courant number at the element-containing nodej given by1tw/1x.
As can be seen from Eq. (7), this optimal diffusion coefficient varies with the mesh size,
and time step at each element.

If the diffusion coefficient used in Lohner’s method is assumed to be constant in each
element, but allowed to vary from element to element as in Eq. (7), then we can introduce
the optimal diffusion inherent in the upwind scheme and our low-order scheme will in
effect be equivalent to upwind differencing, but with the added advantage that there is no
need to resort to the complex upwind method. Furthermore, the diffusion coefficient will
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automatically be adjustable and, hence, there is no need to optimisecd, which is one of the
disadvantages of Lohner’s method.

It is now shown that the addition of the upwind diffusion coefficient to the high-order
scheme reduces that to upwind for the simplest case in one dimension with regular mesh
of size1x and constant positive speedw. If we denotexj = j 1x, where j = 1 · · · K and
let the flux be f = wu then, at nodej , we get the following expression if the high order
scheme with the lumped matrix is employed [5],

1un
j = 1t

[
w

(
un

j −1 − un
j +1

)
21x

+ w21t

2

(
un

j −1 − 2un
j + un

j +1

)
1x2

]
for j = 2, . . . , K−1, (8)

where

1un
j = un+1

j − un
j .

The addition of the upwind diffusion will be of the form for a regular grid and speed,

w1t

21x

(
1 − w1t

1x

)(
un

j −1 − 2un
j + un

j +1

)
. (9)

Adding this form of diffusion (Eq. (9)) to the high-order scheme (Eq. (8)) gives

1un
j = w1t

1x

(
un

j −1 − un
j

)
(10)

which is, of course, the upwind scheme, and it is always positive. Thus, our method now
has the optimum diffusion and the FCT method is expected to give improved performance
over the unoptimized global diffusion coefficient used before. In the variable speed, variable
mesh case the diffusion coefficient to be used becomes for each node

cj +1/2(1 − cj +1/2)

2
, (11)

where

cj +1/2 = whalf1t

1xhalf

andwhalf is the speed and1xhalf is the mesh size averaged over the elements containing
node j .

4. UPWIND (UW) TESTS

The new low-order method is first of all compared with the upwind differencing scheme
in one dimension under different conditions to ensure that the high-order scheme reduces to
simple upwind, with the addition of the diffusion coefficient under conditions encountered
in gas discharge calculations. These involve constant speed, linearly varying speed, rapidly
varying speed, and sign-changing speed.

Figure 2 shows the propagation of a square wave of initial amplitude 10 and width 0.4 cm,
starting atx = 0.4 cm with a constant speed ofw = 1 cm/s after a time of 2 s. The results
with the two methods are almost identical. The same initial pulse is used in the second test
but this time the speed is variable, of the formw = 5− x cm/s [15]; the pulse is propagated
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FIG. 2. Square wave test with constant speed using the upwind methods:◦, high-order scheme with upwind
(UW) diffusion; solid line, finite difference upwind scheme.

for 1 s with a maximum Courant number of 0.5 and we can see again that the results are
almost identical as depicted in Fig. 3. The next test involves a rapidly varying speed of
the formw = 1+ 9 sin8 πx cm/s [17]. Such rapidly varying velocities are found in gas
discharge calculations. The initial pulse is a square wave of amplitude 10 and width 0.2 cm
starting atx = 0.05 cm. Figure 4 shows the propagation of the pulse after 0.2363 s. The two
methods give again almost undistinguishable results.

Finally the last test is a test where the speed changes sign. The speed is of the form
w = 2.5(2− x) cm/s and the initial pulse starts at 1.8 cm. Figure 5 shows two instances of
the pulse, one at 0.5 s and one at 1 s. The results are again in very good agreement which
gives confidence in the method and effectively gives upwind differencing results. The next
step is to apply that with FCT.

5. FCT-TESTS

The performance of the improved FE-FCT algorithm is compared with Lohner’s FE-FCT,
the Lax–Wendroff FD-FCT, and the fourth-order FD-FCT. Figure 6 shows for the propa-
gation of a Gaussian pulse of amplitude 10 with a constant speed ofw = 1 cm/s initially at
x = 0.2 cm propagated for 0.6 s, that the improved FE-FCT performs quite well with tests
other than square waves.

The next test is the propagation of a square wave initially atx = 0.4 cm with amplitude
10 and width 0.4 cm with a linearly varying speed ofw = 5− x cm/s. Figure 7 shows a
comparison of the improved FE-FCT with the Lax–Wendroff FD-FCT and the fourth-order



       

FIG. 3. Square wave test with linearly decreasing speed using the diffusive upwind methods;◦, high-order
scheme with UW diffusion; solid line, finite difference upwind scheme.

FIG. 4. Square wave test with speedw = 1+ 9 sin8 πx cm/s, using the upwind methods:◦, high-order scheme
with upwind diffusion; solid line, finite difference upwind scheme.



      

FIG. 5. Square wave test with sign changing speed of the formw = 2.5(2− x) cm/s using the upwind methods:
- -, the intital pulse;¦, results from the high-order scheme with upwind diffusion att = 0.5 s andt = 1 s, solid
line, finite difference upwind scheme.

FIG. 6. Comparison of the improved FE-FCT with the fourth-order FD-FCT. The initial wave is a Gaussian
pulse in a constant speed field:◦, improved FE-FCT; solid line, fourth-order FD-FCT.
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FIG. 7. Comparison of the improved FE-FCT with the Lax–Wendroff FD-FCT and the fourth-order FD-FCT
for a square wave with a linearly decreasing speed of the formw = 5− x cm/s att = 0.5 s: ◦, Lax–Wendroff
FD-FCT;¦, improved FE-FCT; solid line, fourth-order FD-FCT.

FD-FCT (Morrow [14]) at 0.5 s, whereas Fig. 8 shows the same pulse at 1 s. It is evident
that the FE-FCT (which belongs to the Lax–Wendroff family) is more accurate than the
corresponding Lax–Wendroff FD-FCT and this is because of the inclusion of the consistent
mass matrix. Furthermore, it gives comparable results to the implicit fourth-order FD-FCT
method. Finally, Yousfi’s test [17] is carried out and the results obtained with the improved
FE-FCT and the fourth-order FD-FCT are shown in Fig. 9. The results are in very good
agreement, except at the point where the peak is. This is because the FD scheme is of higher
order and so it can resolve the peaks more accurately.

6. FCT-ADVECTION DIFFUSION TESTS

Gas discharge calculations often involve the transport and diffusion of electrons and
diffusion can dominate part of the calculation [10, 15], so the code was tested in this kind
of conditions. The equation considered this time is

∂u

∂t
+ ∂ f

∂x
+ ∂g

∂x
= 0, (12)

whereu is the speed,f is the convective flux,g is the diffusive flux,t is the time, andx is
the distance. Given the above equation the solution is advanced fromtn to tn+1 = tn + 1t
in two steps as before, but with the only difference that the diffusive flux is used only at the
corrector step and is evaluated at timetn. So the two steps become:



       

FIG. 8. Comparison of the improved FE-FCT with the Lax–Wendroff FD-FCT and the fourth-order FD-FCT
for a square wave with a linearly decreasing speed of the formw = 5− x cm/s att = 1 s: ◦, Lax–Wendroff
FD-FCT;¦, improved FE-FCT; solid line, fourth-order FD-FCT.

FIG. 9. Comparison of the improved FE-FCT with the fourth-order FD-FCT for a square wave test under
a rapidly varying speed field of the formw = 1+ 9 sin8 πx cm/s:◦, improved FE-FCT; solid line, fourth-order
FD-FCT.
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First step(advective predictor),

un+1/2 = un − 1t

2

∂ f n

∂x
. (13)

Second step(corrector step),

1un = un+1 − un = −1t
∂ f n+1/2

∂x
− 1t

∂gn

∂x
. (14)

The spatial discretization of Eqs. (13) and (14) is again performed via the classic Galerkin
weighted residual method using linear elements.

The method was again tested under various conditions. The first test involved the advec-
tion and diffusion of the initial rectangular pulse

u(x, 0) =
{

10, if 2b≤ x ≤ 4b, b > 0,

0, if x < 2b or x> 4b.

This has the analytic solution [10]

u(x, t) = 5

(
erf

{
b − x + wt

2
√

Dt

}
+ erf

{
b + x − wt

2
√

Dt

})
. (15)

The values chosen for this test werew = 2× 107 cm/s,D = 5× 105 cm2/s, andb= 0.151 cm.
Figure 10 shows the results from the calculation using the improved FE-FCT after 20 ns
and these are shown to agree well with the analytical solution.

FIG. 10. Square wave test with constant speedw = 2× 107 cm/s and diffusionD = 5× 105 cm2/s:◦, improved
FE-FCT; solid line, analytical solution.
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FIG. 11. Gaussian wave test with constant speedw = 2× 107 cm/s and diffusionD = 5× 105 cm2/s:◦, im-
proved FE-FCT; solid line, analytical solution.

The second test involved propagating a Gaussian pulse of maximum amplitude 10 initially
at x = 0.25 cm, namely

u(x, 0) = 10 exp

{
− (x − 0.25)2

4Dt0

}
, (16)

with the same speed and diffusion as before andt0 = 1.81× 10−9 s. After a timet the
distribution becomes [10]

u(x, t) = 10(1 + t/t0)
−1/2 exp

{−(x − 0.25− wt)2

4D(t + t0)

}
. (17)

Figure 11 compares the results obtained by the improved FE-FCT and the analytical solution
after 8 ns and, again, the agreement is very good. Therefore, we are confident that the method
works well for advection diffusion problems, as long as we are within the stability criteria
which arec2 + 2c/p≤ 1 if the lumped matrix is used orc2 + 2c/p≤ 1

3 if the consistent
mass matrix is used, wherec is the local Courant number andp= w1x/D, whereD is the
local diffusion coefficient [13].

7. APPLICATION TO STREAMER CALCULATIONS

In order to model electrical corona the electron, positive ion, and negative ion continuity
equations, including ionization, attachment, recombination, and photoionization are solved
simultaneously with Poisson’s equation to give distributions of electrons and ion densities
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and of the electric field [11]. The coupled continuity equations for electrons, positive ions,
and negative ions are

∂Ne

∂t
= S+ Neα|We| − Neη|We| − NeNpβ − ∂(NeWe)

∂z
+ ∂

∂z

(
D

∂Ne

∂z

)
(18)

∂Np

∂t
= S+ Neα|We| − NeNpβ − NnNpβ − ∂(NpWp)

∂z
(19)

∂Nn

∂t
= Neη|We| − NnNpβ − ∂(NnWn)

∂z
, (20)

wheret is the time,x is the distance from the anode,Ne, Np, and Nn are the electron,
positive ion, and negative ion densities, respectively, whereasWe, Wp, and Wn are the
electron, positive ion, and negative ion drift velocities, respectively. The symbols,α, η, β,
andD denote the ionization, attachment, recombination, and electron diffusion coefficients,
respectively. The termS is the source term due to photoionization [11].

Poisson’s equation is

∇(εr ∇φ) + e

ε0
(Np − Nn − Ne) = 0, (21)

whereε0 is the dielectric constant of free space,εr is the relative permittivity,e is the electron
charge, andφ is the electric potential. The details for calculating the transport coefficients

FIG. 12. Field magnitude at 1.5 ns and 2.2 ns in the streamer propagation calculation:◦, improved FE-FCT;
solid line, fourth-order FD-FCT [11] (the anode is atx = 5 cm, and the streamer propagation is from right to left).
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can be found in other papers [11]. For this case a point plane electrode configuration is used
[11] with a gap of 5 cm and tip radius of 0.5 mm, and a voltage of 20 kV is applied at the
point electrode. The results for the first few nanoseconds of streamer propagation are shown
in Fig. 12, which compares the calculated field using the improved FE-FCT method and the
results computed using the computer code developed by Morrow and Lowke [11] who use
the fourth-order FD-FCT method to solve the continuity equations. The three continuity
equations are solved with the new FE-FCT code developed in one dimension, together with
two-dimensional FE for the Poisson’s equation as in Morrow and Lowke [11]. The results
are in very good agreement. We note the computational savings that can be achieved by
using FE over FD. In the FE case 2000 unknowns in an unstructured mesh were used with
a very fine resolution near the anode and very coarse resolution at the body of the plasma,
whereas in the FD case for the same problem, 20,000 unknowns were present. This shows
the advantage of the FE method.

8. CONCLUSION

In this paper an improved FE-FCT algorithm was introduced which is an extension of
the very economical and powerful method used by Lohner in fluid mechanics. The diffu-
sion coefficient is optimized by using the effective diffusion coefficient from the upwind
differencing algorithm. The diffusion is added as a mass diffusion to the high-order scheme
to give a low-order scheme which behaves like upwind differencing, and which has a self-
adjustable diffusion coefficient. Thus, the simplicity of Lohner’s method is maintained,
together with the optimum diffusion of the upwind scheme, whereas to compute an up-
wind scheme directly would be very complex in two dimensions. The low-order scheme
of the improved FE-FCT scheme was shown to give almost identical results, compared
with the upwind scheme and the improved FE-FCT was shown to give improved results
because the low-order scheme was optimised. The improved FE-FCT scheme is used in
gas discharge problems, yielding excellent results. The current work involves extending
this improved FE-FCT to two dimensions which will allow us to solve gas discharge prob-
lems with arbitrarily shaped electrodes using FE methods. This will result in considerable
computational savings over the finite difference method.
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